A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1.

نویسندگان

  • T Perlmann
  • L Jansson
چکیده

In addition to its role as a 9-cis retinoic acid receptor, RXR has an important role in the regulation of multiple hormonal pathways through heterodimerization with nuclear receptors. Here, we show that two orphan receptors, NGFI-B and NURR1, which have been shown previously to interact with DNA as monomers, also can heterodimerize with RXR. These heterodimers bind selectively to a class of retinoic acid response elements composed of direct repeats spaced by 5 nucleotides. In this respect they are similar to heterodimers formed between RXR and the receptor for all-trans retinoic acid, RAR. However, whereas RXR is inhibited in the RXR-RAR heterodimer, NGFI-B/NURR1 promote efficient activation in response to RXR ligands and therefore shift RXR from a silent to an active heterodimerization partner. These data show that NGFI-B and NURR1 can increase the potential of RXR to modulate gene expression in a ligand-dependent manner by allowing a distinct class of direct repeats to serve as specific RXR response elements. Because expression of both NGFI-B and NURR1 is rapidly induced by various growth factors, these findings also suggest a novel mechanism for convergence between vitamin A or retinoid and growth factor signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique response pathways are established by allosteric interactions among nuclear hormone receptors

Heterodimerization is a common paradigm among eukaryotic transcription factors. The 9-cis retinoic acid receptor (RXR) serves as a common heterodimerization partner for several nuclear receptors, including the thyroid hormone receptor (T3R) and retinoic acid receptor (RAR). This raises the question as to whether these complexes possess dual hormonal responsiveness. We devised a strategy to exam...

متن کامل

Parathyroid hormone induces expression of the nuclear orphan receptor Nurr1 in bone cells.

Following PTH treatment, immediate changes in osteoblast gene expression involve induction of primary response genes. Primary gene products subsequently mediate the osteoblast response to PTH. Using representational difference analysis (RDA) to isolate primary genes induced by PTH in osteoblasts, we identified Nurr1, a member of the NGFI-B nuclear orphan receptor subfamily. Nurr1 binds DNA as a...

متن کامل

Requirements for heterodimerization between the orphan nuclear receptor Nurr1 and retinoid X receptors.

The nuclear receptor nurr1 is a transcription factor involved in the development and maintenance of neurons synthesizing the neurotransmitter dopamine. Although the lack of nurr1 expression has dramatic consequences for these cells either in terms of differentiation or survival, the mechanisms by which nurr1 controls gene transcription still remain unclear. In the intent to understand better th...

متن کامل

Separation of retinoid X receptor homo- and heterodimerization functions.

As a promiscuous dimerization partner the retinoid X receptor (RXR) can contribute to signaling by multiple nuclear receptors. However, the impact of RXR cosignaling and the possible existence of an RXR homodimer signaling pathway are largely unexplored. We report here on the separation of RXR homo- and heterodimerization as an essential step towards the elucidation of the roles of RXR homo- an...

متن کامل

Ligand Dependent Switch from RXR Homo- to RXR-NURR1 Heterodimerization

Retinoid X receptors (RXRs) play key roles in many physiological processes in both the periphery and central nervous system. In addition, RXRs form heterodimers with other nuclear receptors to exert their physiological effects. The nuclear receptor related 1 protein (NURR1) is particularly interesting because of its role in promoting differentiation and survival of dopamine neurons. However, on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 9 7  شماره 

صفحات  -

تاریخ انتشار 1995